Corrigé du Brevet Blanc, mai 2012, Collège Bourbon.

ACTIVITES NUMERIQUES

Exercice 1

1) a) Si le nombre de départ est 1, le résultat final est : (1+2)²-1²=3²-1²=9-1=8

1) b) Si le nombre de départ est 2, le résultat final est : (2+2)²-2²=4²-2²=16-4=12

1) c) Si le nombre de départ est x, le résultat final est : $(x+2)^2-x^2$

2) $P = (x+2)^2 - x^2$ $P = x^2 + 2 \times 2x + 2^2 - x^2$ donc $P = x^2 + 4x + 4 - x^2$ donc P = 4x + 4

3) On cherche x pour que le résultat final soit égal à P=20.

On résout donc 4x+4=20 donc 4x=20-4 donc 4x=16 donc $x=\frac{16}{4}$ donc x=4

On doit choisir x=4 pour obtenir P=20

Exercice 2

 $Probabilit\'{e} \ d'un \'{e} v\'{e}nement = \frac{Nombre \ de \ cas \ favorables}{Nombre \ de \ cas \ possibles}$

1) $P(A) = \frac{1}{8}$

2) $P(T) = \frac{4}{8} = \frac{1}{2}$

3) $P(M) = \frac{3}{8}$

4) L'événement non A est l'ensemble des événements différents de A.

$$P(\operatorname{non} A) = \frac{7}{8}$$

Exercice 3

1) On va déterminer PGCD(1394;255) par l'algorithme d'Euclide.

 1
 3
 9
 4
 2
 5
 5
 2
 5
 5
 1
 1
 9
 1
 1
 9
 1
 7

 1
 1
 9
 5
 1
 7
 2
 0
 7

Le dernier reste non nul est 17 donc PGCD(1394;255)=17

2) a) Puisque les colliers sont identiques, le nombre de colliers doit diviser le nombre de perles blanches et noires. On en veut le nombre maximum. C'est donc le PGCD(1394;255)=17.

On peut donc réaliser au maximum 17 colliers en utilisant toutes les perles.

b) Nombre de perles blanches par collier = Nombre total de perles blanches \div 17 = 1394 \div 17 = 82 Nombre de perles noires par collier = Nombre total de perles noires \div 17 = 255 \div 17 = 15

ACTIVITES GEOMETRIQUES

Exercice 1

Pour que les unités soient homogènes, on convertit AB=1 m=100 cm

On calcule séparément AB²=100²=10000

 $OA^2+OB^2=60^2+80^2$ $OA^2+OB^2=3600+6400=10000$

On constate que AB²=OA²+OB². D'après la réciproque du théorème de Pythagore, AOB est bien rectangle en O et les murs sont bien perpendiculaires.

Exercice 2

1)
$$AO = \frac{1}{2}AC = \frac{1}{2} \times 12 = 6 \text{ cm}$$

Le triangle SOA est rectangle en O donc d'après Pythagore, on a :

$$SA^2 = AO^2 + OS^2$$

$$SA^2 = 6^2 + 8^2$$

$$SA^2 = 36 + 64$$

$$SA^2 = 100$$

donc $SA=10 \, cm$.

2) $AB = 6\sqrt{2}$ est la longueur d'un côté du carré ABCD donc :

aire de ABCD =
$$\cot \times \cot = (6\sqrt{2})^2$$

Aire de ABCD=
$$6^2 \times (\sqrt{2})^2 = 36 \times 2 = 72 \text{ cm}^2$$

3) Volume d'une pyramide = $\frac{1}{3}$ × aire de la base × hauteur

Volume de la pyramide SABCD =
$$\frac{1}{3}$$
 × aire de ABCD×SO

Volume de la pyramide SABCD =
$$\frac{1}{3} \times 72 \times 8 = \frac{1}{3} \times 3 \times 3 \times 8 \times 8 = 3 \times 64 = 192 \text{ cm}^3$$

4) Comme ASB est isocèle en S, on a SA=SB=10 cm

$$\frac{SA'}{SA} = \frac{3}{10}$$
 et $\frac{SB'}{SB} = \frac{3}{10}$

On constate que $\frac{SA'}{SA} = \frac{SB'}{SB}$. De plus, les points S, A', A et S, B', B sont alignés dans le même ordre. D'après la réciproque du théorème de Thalès, (AB) et (A'B') sont parallèles.

- 5) Le coefficient de réduction est $k = \frac{SA'}{SA} = \frac{3}{10}$
- **6)** VSA'B'C'D' : désigne le volume de la petite pyramide VSABCD : désigne le volume de la grande pyramide

D'après la leçon, $VSABCD=k^3 \times VSA'B'C'D'$

$$VSABCD = \left(\frac{3}{10}\right)^3 \times 192 = \frac{648}{125} = 5,184 \text{ cm}^3$$

Exercice 3

Comme le triangle CAB est rectangle en A, les angles \widehat{BCA} et \widehat{ABC} sont complémentaires.

1)
$$\widehat{BCA} = 90 - \widehat{ABC} = 90 - 10 = 80^{\circ}$$

2) Comme le triangle CAB est rectangle en A, $\tan \widehat{ABC} = \frac{AC}{AB}$

$$\tan 10^{\circ} = \frac{AC}{500} \text{ donc } 500 \times \tan 10^{\circ} = \frac{AC}{500} \times 500 \text{ donc } AC = 500 \times \tan 10^{\circ} \approx 88 \text{ m}$$

PROBLEME

PARTIE A

1)	Zone de lancer	R	M	Е	Total
	Nombre de lancers	30	20	10	CO

- 2) a) Fréquence des lancers depuis la zone $E = \frac{10}{60} = \frac{1}{6}$
 - **b)** Fréquence des lancers en dehors la zone $E = \frac{50}{60} = \frac{5}{6}$
- 3) Nombre de lancers réussis dans la zone $M = \frac{3}{4} \times nombre total de lancers dans la zone R$

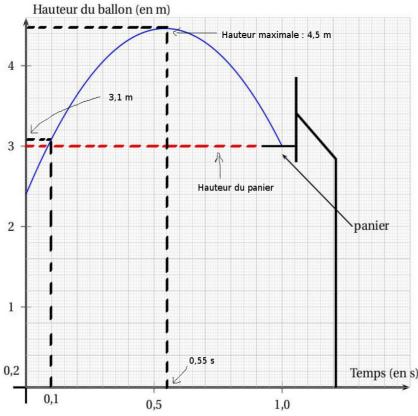
Nombre de lancers réussis dans la zone $M = \frac{3}{4} \times 20 = 3 \times 5 = 15$

Nombre de lancers réussis dans la zone R = Nombre total de lancers réussis – Nombre de lancers réussis dans les zones R et M

Nombre de lancers réussis dans la zone E=51-(27+15)=51-42=9

9 lancers ont été réussis dans la zone E.

PARTIE B



- **1)** La hauteur du panier est de 3 m
- **2)** 0,1 s après le lancer, le ballon se trouve à 3,1 m
- **3) a)** La hauteur maximale atteinte par le ballon est comprise entre 4,4 m et 4,5 m. **b)**Le ballon atteint sa hauteur maximale au bout de 0,55 s

PARTIE C

1) Vitesse moyenne du ballon =
$$\frac{\text{distance parcourue}}{\text{durée du parcours}} = \frac{d}{t} = \frac{7.2}{0.4} = 18 \text{ m/s}$$

1) Vitesse moyenne du ballon =
$$\frac{\text{distance parcourue}}{\text{durée du parcours}} = \frac{d}{t} = \frac{7,2}{0,4} = 18 \text{ m/s}$$
2) Vitesse moyenne du ballon =
$$\frac{18 \text{ m}}{1 \text{ s}} = \frac{18 \times 3600 \times 1000 \text{ m}}{1 \times 1000 \times 3600 \text{ s}} = \frac{18 \times 3600 \text{ km}}{1 \times 1000 \text{ h}} = 64,8 \text{ km/h}$$